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Over the past 15 years important advances have been made in the experimental study of 
the microstructural changes occurring during the non-linear steady-state creep of single 
phase crystalline matter at elevated temperatures. Curiously, although the results of these 
painstaking studies have gone a long way toward elucidating the mechanism of this 
phenomenon, they have been largely ignored in favour of some simple dislocation 
mechanisms that are not only inconsistent with these observations, but are also unable to 
describe correctly the known phenomenology. This review concentrates primarily on the 
recent experiments on microstructural alterations occurring during creep; however, it also 
surveys the many mechanistic models" that attempt to describe this phenomenon, and 
finds them all deficient. 

1. Introduction 
High temperature creep of crystalline matter has 
received continued interest for many decades both 
from the practical point of view, and also from the 
point of the mechanism of inelastic deformation at 
high temperature. The mechanism of sl0w defor- 
mation above half the melting point has aspects 
essentially different from that at low temperature: 
the rate of deformation at high temperature is 
primarily controlled by atomic diffusion, which is 
absent at low temperature. After the accumulation 
of a large number of creep experiments on various 
kinds of crystalline materials, the phenomenologi- 
cal and microstructural descriptions of high tem- 
perature creep seem to be nearly complete. Many 
theoretical models, of either phenomenological 
nature or based on dislocation theory, have been 
proposed for the creep mechanism at high tem- 
perature. The present situation, however, is still 
far from a complete understanding of all the 

experimental observations. 
In recent years, considerable progress has been 

made in the direct observation of changes in 
microstructure in creeping materials by trans- 
mission electron microscopy, and the etch-pit 
method. Experiments, on creep transients, in 
particular the so-called "dip-tests", have contri- 
buted additional understanding. Therefore, 
although several recent review articles on this 
subject exist [1 -14] ,  it seems worthwhile to 
resurvey this field mainly concentrating our 
attention on the above experiments. 

Materials to be dealt with will be limited 
primarily to single phase crystalline materials 
including metals, alloys and ceramics. The 
phenomenon to be treated is that which has 
initially been studied by Andrade in 1911 and 
which is currently referred to as "power-law" 
creept, where the creep deformation is due mainly 
to the glide and climb motion of dislocations 

*On leave from The Institute for Solid State Physics, The University of Tokyo, during 1974-1975. 

~Although other creep phenomena of far less technological importance are currently named after their discoverers, 
curiously, this most important component of steady-state creep is not named after Andrade on the ground that this 
would imply to some only the transient phase of this creep phenomenon, having roughly a t 1/3 time law. In keeping 
with the increasing usage of the terminology of "Andradean viscosity" for this phenomenon in the field of geology, 
we propose that the uninspiring terminology of "power-law creep" be dropped in favour of "Andradean creep". 
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controlled by diffusion. Creep phenomena occur- 
in at very high temperature, at very low stress 
and the behaviour of the very fine-grained mater- 
ials, exhibiting creep phenonomena classified as 
Nabarro-Herring creep [15, 16], Coble creep 
[17], Harper-Dorn creep [18], as well as the 
phenomenon of superplasticity (for a review see 
[19] ), will not be considered. 

In this review, after summarizing briefly the 
phenomenological descriptions of the creep pro- 
cess, the qualitative and quantiative aspects of 
the changes in microstructure will be described, 
then the )esults of experiments on creep trans- 
ients will be summarized, and finally current 
theories on the mechanism of steady-state creep 
will be discussed in the light of these experimental 
facts. The effect of grain size on the creep rate has 
been reviewed previously [6,9, 14] and it has 
been shown that as far as the steady-state is con- 
cemed the creep rate is not much influenced by 
grain size if the latter is not too small [9, 14, 20]. 
Although the contribution of grain-boundary 
sliding to the creep strain [20-23] ,  and the dis- 
location structures resulting from the grain-boun- 
dary sliding induced inhomogeneous deformation 
in polycrystals [24-27] have long been recog- 
nized, there is no essential difference between poly- 
crystals and single crystals with regard to the con- 
trolling mechanism of steady-state creep. Thus, no 
special attention will be paid to the role of the 
grain boundary in the creep microstructure. Re- 
cent theoretical developments in grain-boundary 
sliding accommodated by diffusion and by plastic 
flow inside the grain governed by power law creep 
will be briefly reviewed in Section 5. 

2. Creep equations 
2.1. The creep curve 
Typical creep curves of annealed crystalline mat- 
erials are composed of four stages, i.e. instan- 
taneous strain, transient or primary creep, steady- 
state or secondary creep, and tertiary creep that is 
usually connected with fracture which will not be 
the subject of this review. More than a half-century 
ago, Andrade analysed the creep curves of  metals 
and showed that the creep strain e is proportional 
to time to the ~ power (i.e. e ~ t'/3 ) at the initial 
stage [28]. The creep curve up to the end of 
steady-state creep can often be expressed by the 
following equation (called sometimes the Cottrell-  
Aytekin equation [29] ). 

e = eo + a t  1/3 + es t .  (1) 

Here, e0 is the instantaneous strain, a is a constant 
and e s is an asymptotic creep rate as t ~ oo. So far, 
many types of empirical equations of transient 
creep have been proposed besides Equation 1 
(see [30] ), but as shown by Conway and Mullikin 
different equations can accurately represent a 
given set of data by choosing the different para- 
meters appropriately; consequently, the degree of 
fit obtained by different functional forms cannot 
be used to assess relative merit, and differences 
cannot easily be discerned experimentally [30]. 
Among these different functional forms the equa- 
tion originally proposed by McVetty [31] is note- 
worthy, 

[ e = eo +eT  1 =-exp + e s t .  (2) 

Here, eT corresponds to the asymptotic transient 
strain component and t r is a time constant. Be- 
cause of extensive use of this equation by Garofalo 
[6], it is often called the Garofalo equation. As 
Webster e t  al. showed [32], the above equation 
can be derived from the differential equation for 
first order kinetics, i.e. 

de i -& 
- ( 3 )  

dt tr 

Although the physical meaning of the relaxation 
time, t r, is not at all clear, Equation 3 has a natural 
form for transient creep. Another operational 
advantage of Equation 2 over Equation 1 is 
[32], that the former carl define a finite value of 
initial strain-rate e i -= (de~dr)t= o = e s + e T / t r ,  in 
contrast to Equation 1: this corresponds to the 
experimental observation of  this quantity. As first 
demonstrated by Garofalo e t  al. for stainless steel 
[33], ei has often been reported to be propor- 
tional to es [32-35] ,  which suggests that, not 
surprisingly, the kinetics of transient creep and 
steady-state creep are governed by the same 
mechanism. From this relation, the asymptotic 
strain eT is related to e s by the equation, 

8T 
- -  ~ % .  ( 4 )  
tr 

Webster e t  al. [32] have also shown for some 
metals the proportionality between 1/tr and es, 
which in turn leads to constant eT. In this case all 
the creep curves are to be fitted together by use 
of a normalized time scale of est. 

Li derived a transient creep equation from a 
dislocation mechanism [36]. He obtained acom- 
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prehensive functional form starting from the time 
equation of mobile dislocation density proposed 
by Johnston and Gilman [37], but the general 
applicability of the basic assumptions is question- 
able. 

It should be noted that in some cases, mainly 
in alloys under low stress, the transient creep curve 
is significantly different from that expressed by 
Equations 1 or 2. In such cases transient creep 
with gradual acceleration [38-41] and sigmoidal 
transient creep [42~r has been observed. 
Menerzes et al. [43, 44] successfully analysed the 
sigmoidal creep curve of LiF single cyrstals accord- 
hag to the theory of Haasen et aL (see [46]), 
where the initial acceleration of the creep rate is 
attributed to the increase of mobile dislocation 
density and the deceleration at the later stage to 
work hardening due to multiplied dislocations. 
Similar arguments can be applied to other crystals�9 
It is also known that the shape of the transient 
creep curve changes drastically with prior cold 
work; and sigmoidal curves are also obtained in 
pre-strained materials (see, e.g. [47] ). 

2.2. Steady-state creep equation 
It has been established earlier that steady-state 
creep rate under the usual creep condition is best 
expressed as a function of temperature and stress 
by es ~ o n exp ( -  Qe/kT), where o is the applied 
tensile stress, Qe the activation energy of creep 
and kT has the usual meaning (e.g. [48]). Later 
theoretical justifications [49, 50] incorporated the 
elastic modulus, and also temperature into the 
pre-exponential factor [4]. Thus, the following 
type of empirical equation has been used most 
commonly [4, 10, 13, 14]. 

es = AOVD exp . (5) 

Here, /l is the shear modulus, v D the atomic fie- 
quency and ~2 the atomic volume, Ao and n are 
non-dimensional constants. 

Garofalo proposed a stress dependence of the 
type (sinh Bo) n (where B is a constant) which 
showed good agreement with experiments for 
some alloys over a wide range of Stress [51]. 
The steady-state strain-rate es hw under hot-working 
conditions has also been shown to be represented 
by the following equation over a wide stress range 
[52-54,  121. 

�9 law P ( _  ~__) es = Ao (sinh Ba) n exp (6) 
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Here, A~ and B are material constants. At low 
stress, Equation 6 is reduced to a form similar to 
Equation 5. 

Another alternative expression is that based 
on the concept of the stress assisted thermally 
activated motion of dislocations [5,7, 55-57] 
and is written as 

es = 2eosinh \ kT] exp , (7) 

where e0 is a constant having dimensions of 
reciprocal time, r the resolved shear stress, and v* 
the activation volume which is in general a func- 
tion of stress. When v*r/kT>> 1 is satisfied, Equa- 
tion 7 is approximated by 

�9 ( Q-:q 
es = eoexp kT y (8) 

Jonas introduced a back stress term in r [58] 
to take account of internal stresses. Several re- 
searchers analysed thek data to determine the 
activation area A*(= v*/b) in the creep process 
[57-6"4] and the experimental values of A* 
range between 102 and 103b 2. In the following 
equation of the type of Equation 5 is used simply 
because the majority of the experimental data is 
well represented by this equation, for which 
mechanistic models are also more readily obtain- 
able. 

2.2. 1. Act ivat ion energy 
Good agreement between the activation energy of 
steady-state creep rate and that of self diffusion 
has been shown for a number of materials (see 
reviews [5-8,  10, 13, 14,65]).  The correspon- 
dence between these two quantities has most 
clearly been demonstrated in the case of phase 
transitions [66, 67] including magnetic transition 
[56]. In this comparison, it has been pointed out 
that temperature dependence of/~ in Equation 5 
has to be taken into consideration in evaluating 
Qe [68, 69]. The above correspondence excludes 
mechanisms in which the activation process does 
not involve self-diffusion. 

Using the diffusion coefficient, D, Equation 5 
is simplified as 

es - " k - T - F ] '  (9) 

where A and n are non-dimensional constants 
which can be considered as universal if no material 
constants other than #, b, and D are involved in 
the mechanism of the creep process. 



2.2.2. Stress e x p o n e n t  
A typical value of n for pure metals is 5. With the 
addition of solute elements, the value of n de- 
creases rapidly and in the case of some solid solu- 
tion alloys drops down to 3 [41, 70, 71] while in 
other solid solution alloys it remains high at a 
value around 5 (see [14]). Sherby and Burke 
[8] classified the former type of alloys as class I 
and the latter as class II*. 

Cannon and Sherby found a correlation be- 
tween the alloy type, and the size parameter of 
solute element and elastic modulus [73]. They 
rationalized this correlation on the assumption 
that creep is a series process involving the viscous 
glide motion of dislocations obeying a third power 
law of r/l~ and the climb motion of dislocations 
obeying a fifth power law of r/#; the creep rate 
being controlled by the slower of the two pro- 
cesses. From this argument, they anticipated that 
a transition from class II to class I behaviour 
occurs as the stress increases. This transition has, 
in fact, been reported to occur in some alloys 
[72, 74]. Recently, Mohamed and Langdon gave a 
more elaborate discussion of this problem along 
similar lines and showed that the behaviour of 
most of the alloys is consistent with the criterion 
they stated [72, 75]. In general, a large size misfit 
of solute atoms, a high concentration of solute, 
and high stacking fault energy tend to lead to 
class I behaviour. 

2.2.3. Effect o f  stacking fault energy 
The effect of stacking fault energy, 3', was first 
pointed out by Barrett and Sherby [76] for pure 
f c c  metals, where, for the same a/# and D, es oc 
3 ,3"s . Effect of the change in 3' due to alloying on 
the creep rate has also been discussed [77-80] .  
For copper-base alloys, an alternative expression 
of es oc exp(kl3"/l~b) has been proposed, where 
kl is a constant [80]. Fig. 1 shows the relation 
between normalized creep rate (at a//l = 2 x 10 - 4 )  

and 3"/lab for twenty-five f c c  metals and alloys 
compiled by Mohamed and Langdon [72]. The 
creep rate of 80% of all f c c  metals and alloys is 
found to be well represented by substituting for 
A in equation 9 

A = A ' [ •  3 ( l O )  ' 
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Figure 1 Relation between normalized creep rate at a/# = 
2 X 10 -4 and normalized stacking fault energy for 25 f c  c 
metals and alloys, (from [72] ). 

where A' is a new non-dimentional constant. 
On the other hand, Bird et al. [14] noticed a 

systematic effect of the creep rate on the stress 
exponent for fc  c metals, and correlated the value 
of n with the stacking fault energy assuming A to 
be a universal constant, i.e. n is a gradually increas- 
ing function of l~b/3`. Considering the scatter of 
the experimental data, it cannot be easily decided 
which expression is more appropriate. It appears 
safe, however, to say that around the usual stress 
range of a//~--~ 10 -4, the temperature compen- 
sated creep rate, eskT/Dllb, tends to have larger 
values for fc  c metals with larger stacking fault 
energy. 

*In a recent  paper [72],  this classification of  class I and class II has been reversed, but  in this paper we follow the 
original definit ion of  Sherby and Burke. 
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TABLE I Values of n and A in Equation 9 for various 
metals by Bird et al. [14]. Typical values for each case are 
shown in parentheses 

Material n A 

fc c metals 4.4-5.3 (5) 10 s -108 (107) 
b c c metals 4-7 (5) l0 s -10 ~s (10 9) 
h c p metals 4-6 (5) 103 -108 (106 ) 
Class II alloys 4.5-6 (5) l0 s --109 (10 6) 
Class I alloys 3-4 (3.3) 10 -~ -104 (101) 

2 .2 .4 .  Values  o f  c o n s t a n t s  
The most elaborate task of determing the con- 
stants A and n in Equation 9 for many materials 
has been performed by Mukherjee, Bird and Dora 
[13, 14]. The extent of these values for various 
kinds of metals is listed in Table I. 

For f c c  metals, Bird et al. have shown that 
when an appropriate value of n for each metal is 
selected according to their n - 7  diagram, all the 
creep data are well represented within a factor of 
two by setting A = 2.5 x 106 . This is in contrast 
to the expression of Equation 7 as mentioned 
above. On the other hand, for b c c metals n varies 
over a wide range even for the same material, but 
instead the whole experimental data fall in a 
relatively narrow region. Fig. 2 shows regions 
where data for different kinds of materials are 
included. 

tO -5 
IIIIIFc  mo;o,s 
- ~ BCC metals 

i r T I 5 ~  I I lYY I 
~2x10-5 10-4 10-3 

o-/p 

t L T ~  

)]]11 Class I alloys 

2x10-5 10-4 10-3 

cr/,a 

Figure 2 Regions of five types of metals in which creep 
data are included in ~skT/Dpb versus o/p plot (from 
[14]). 

Not many data are available for ionic crystals. 
For poly-crystalline NaC1, KC1 and LiF n = 5 to 
6 and A = 1 0 8  t o  1012 [81], and the data 
points fall in the b c c region. For MgO [82, 83],  
n = 3.3 and A ~ 10, and the data fits the behav- 
iour of class I alloys. 

3. Microstruetures 
Since the first observation of Jenkins and Mellor 
[84] on the fragmentation of grains during high 
temperature deformation, the most characteristic 
microstructure in crept materials has been referred 
to as "substructure", a term which has become 
frequently used since the investigations around 
1950 [21, 8 5 - 9 2 ] .  Substructures have been 
investigated by X-ray and/or light microscopy 
techniques until recent years, when transmission 
electron microscopy and the dislocation etch-pit 
technique have become available for the detailed 
and quantitative studies on microstructures in 
crept materials. Because of the limited resolving 
power of the earlier techniques, some of the 
quantitative estimates, e.g. for subgrain size or 
misorientation angle, obtained earlier, have been 
found at times to be erroneous [14]. However, the 
qualitative features of subgrain formation and its 
mechanism have been established at the beginning 
of the 1950s: these mechanisms of substructure 
formation are poligonization and kinking [27, 88, 
9 1 - 9 5 ] .  

3.1.  Su r f ace  obse rva t ions  
Coarse slip bands have been observed for various 
materials mainly at an early stage of creep strain 
and their average spacing has often been correlated 
with the reciprocal of  the applied stress [92, 96]. 
McLean estimated contributions of  coarse slip and 
grain-boundary sliding to the creep strain and 
found that about half of  the total strain must be 
due to processes other than the above two [21]. 
He attributed this "missing creep" to free slip. 
Another important feature is the formation of 
deformation bands, kink bands [89, 94, 95] ,  and 
folds [97, 98] .  Folding in grains is associated with 
grain-boundary sliding [98] and does not occur 
in single crystals. 

Surface observations after repolishing and 
restraining specimens crept previously to the 
steady-state stage have been reported for A1 
[24, 99] ; an example is shown in Fig. 3. Two facts 
are noteworthy: (1) no sharp slip lines are re- 
solved, indicating homogeneous distribution of 
dislocation sources; (2) migration of subgrain 
boundaries takes place, the velocity of  which, in a 
typical case, is such that for every incremer~t of 
0.05 strain the whole crystal is swept by sub- 
boundaries. The latter fact has not been properly 
appreciated in creep phenomena until the recent 
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Figure 3 A micrograph of an aluminium specimen de- 
formed 20% at 10 -s sec -I (~ 1.0 MN m -2) in tension at 
500 ~ C, electropolished, followed by an incremental strain 
of 1.5% at 500 ~ C, showing migration of subboundaries, 
bar ~ 200urn, (from Exell and Waxrington [99], courtesy 
of Taylor and Francis Ltd). 

measurements by Exell and Warrington [99], 
although experiments on stress-induced small-angle 
boundary migration have been made earlier 
[100-103] .  The main results of Exell and Warr- 
ington on Al are: (1) the velocity of a subgrain 
boundary, Vsb ~x o n exp(--Qsa/kT), where n .-~ 3.5, 
and Qsa is the activation energy for self diffusion; 
(2) vsb/d  = const, for constant es, where d is the 
average subgrain size; and (3) the strain contri- 
bution due to the sub-boundary migration 
amounts to be about 25% of the total strain. 
Migration of sub-boundaries in creep has also been 
observed by means of X-ray topography [104] 
and by transmission electron microscopy [105]. 

3.2.  Process o f  s table s t ruc tu re  f o r m a t i o n  
As stated before, the creep substructure is quite 
heterogeneous in polycrystals, owing to the 
influence of grain boundaries. Even in single 
crystals, substructure formed during transient 
creep is also heterogeneous on the scale of light 
microscopy. The general features are: (1) at the 
initial stage, the dislocation structure is essentially 

the same as in low temperature deformation; 
(2) the dislocation structure is quite heterogeneous 
at the start of the transient stage, and sub-bound- 
aries begin to form as straining continues at a 
decreasing rate, except in class I alloys; (3) the 
dislocation structure gradually changes to a stable 
and homogeneous one in steady-state creep. The 
subgrain size in steady-state creep is independent 
of grain size [106] and is generally a function only 
of stress. 

Transmission electron microscopy is not an 
appropriate technique to investigate the overall 
change of dislocation structure, because of the 
relatively large scale of the inhomogeneity of the 
structure and also because the subgrain itself is 
larger than the foil thickness. The most suitable 
method for the study'of  dislocation arrangements 
in creep is the dislocation etch-pit method, which 
has been applied to Fe [107, 108], Fe-3% Si 
[25, 106, 109], Cu [110-112] ,  Cu alloys [113], 
Mo [114], NaC1 [115], MgO [1161, and LiF 
[117,118].  The results on Cu [110,112] canbe 
taken as typical for fc  c single crystals, those on 
Mo [114] typical for b c c  metals, and those on 
MgO [116] typical for ionic crystals. According to 
these results no essential differences in the change 
of dislocation structure during transient creep can 
be detected among different crystal structures. 

Although a wide variety of dislocation struc- 
tures depending upon stress and temperature have 
been reported [115, 119, 120], the following 
process of structure development seems to be the 
most typical. (1) At the initial stage, the dis- 
location structure is uniform, forming cells resem- 
bling those that develop in low temperature 
deformation [110]. (2) Deformation bands or 
kink bands begin to appear as the strain increases 
and parallel tilt boundaries form around them, 
having a spacing which increases away from the 
kink bands [110, 111]. In addition to these poly- 
gonized tilt walls which are perpendicular both to 
the slip direction and slip plane, sub-boundaries 
nearly parallel to the slip plane also form [109-  
112] ; these are considered to be twist boundaries 
consisting of co-planar dislocations. In general, the 
former type of simple tilt boundaries predominate 
at the early stage [25, 95, 111, 112, 114-116, 
121-124] .  (3) During the transient stage, a 
heterogeneous dislocation structure develops, 
where regions with dense parallel subgrains and 
regions with coarse subgrains or with hardly any 
sub-boundaries at all are distributed alternately 
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Figure 4 Changes in subgrain width and creep rate with 
creep time for two types of regions of substructure, fine 
subgrain region and coarse subgrain region, in a single 
crystal of Cu (from [ 112] ). 

[112, 114-116] .  Hasegawa et al. measured the 
local strain-rate in the two regions in Cu and 
showed that it is higher in the coarse region than 
in the dense region [112]. (4) The dense sub- 
structure region gradually becomes coarser and 
the coarse region denser to establish a homo- 
geneous substructure, and at the same time banded 
subgrains change to uniaxial ones. The changes in 
subgrain width and in the local strain-rate in the 
two regions measured for Cu single crystals are 
shown in Fig. 4 [112]. The above process of 
homogenization of dislocation structure is sche- 
maticaUy depicted in Fig. 5. In the case of Mo 
single crystals investigated by Clauer el al. [114] 
no homogeneous dislocation structure was ob- 
served, which was consistent with the fact that 
no steady-state could be realized in this material 
before fracture [125]. 

Considering the high mobility of subgrain 
boundaries mentioned above, the coarsening of 
subgrains in the above process seems to take place 
mainly through the migration of sub-boundaries, 
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not by the coalescence of subgrains due to sub- 
boundary evaporation [126], as previously 
suggested by Gleiter [105] and Exell and Warr- 
ington [99]. Rather, the steady substructure is 
only steady on a time average and is realized 
through a dynamic balance between the rate of 
formation of new boundaries by decomposition 
into cells of higher energy dislocation structures 
produced during an increase of strain and that of 
annihilation due to impingement of sub-bound- 
aries of opposite sign moving in the opposite 
directions [99,127].  

3.3.  Dis locat ion  s t ruc tu r e s  
Direct observation of dislocations in crept materi- 
als by transmission electron microscopy has been 
reported in a number of papers (A1 [127-133] ; 
A1 alloys [41, 134-138] ;  Cu [113, 122, 123, 
139-143] ;  Cu alloys [44, 64, 113, 144, 145]; 
Fe [107, 108, 120, 146-148] ;  Fe alloys [149-  
153]; Ni [154, 155]; Mo [114]; stainless steel 
[119, 156-162] ;  Re [163]; W [164]; W alloy 
[165]; Zr [151]; MgO [83,116, 124, 166]. Typi- 
cal dislocation structures for b cc  metals, f c c  
metals, ionic crystals and class I alloys are shown 
in Fig. 6. 

General features of  dislocation structures inside 

Figure 6 Typical dislocation structures inside the subgrain 
at the steady state for: (a) alpha iron crept to 20% strain 
at 700 ~ C and 20 MN m -2 , bar =- 5 #m (from T. Iikubo, H. 
Oi~kawa and S. Karashima, private communication); (b) 
copper-10at.% nickel crept to 16.8% strain at 600~ 
and 51.7MNm -2, ba r~ l~m (from Jones and Sellars 
[113], courtesy of Institute of Metals); (c)aluminium- 
5.1 at.% magnesium crept to 5% strain, at 359~ and 
48 MN m -2 , bar -= 1.um (from Horiuchi and Otsuka [41], 
courtesy of Japan Institute of Metals); (d) Magnesium 
oxide, crept to 2.8% strain, at 1300~ C and 60MNm -2, 
bar-= 1 #m (from Bilde-S~rensen [83], courtesy of 
Pergamon Press). 
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the subgrains characteristic of steady-state creep, 
except in class I alloys, are as follows. (1) Dis- 
locations inside the subgrain have generally no 
strong directionality, although edge tendency in 
Mo [114] and screw tendency in Cu [141] were 
reported. (2) They form coarse networks (often 
called three-dimensional). (3) No pile-ups exist. 
(4) They sometimes form incomplete sub-bound- 
aries. 

Sub-boundaries are in some cases loosely 
knitted and in other cases well knitted depending 
upon the creep rate and temperature [131, 140]. 
Compared with b cc metals and A1 (e.g. [107, 
133]), Cu [139,142] and Cu alloys [35, 44, 64] 

seem to have less tendency to form well-knitted 
sub-boundaries, suggesting the effect of the 
stacking fault energy on sub-boundary formation. 
Myshlyaov et al. [133] analysed regular dis- 
location networks and showed that non-equilib- 
rium boundaries of different types dominate. 

On the other hand, some alloys, mainly belong- 
ing to class I, have the following features. (1) Less 
tendency to form networks and sub-boundaries 
(A1-Mg [41, 136, 137], Cu-10 at. % Au [113], 
Fe-3.5 at. % Mo [152]). No sub-boundary 
formation until the later stages of steady-state 
creep has also been observed for W-5 wt % Re 
[165] and 20Cr-35Ni stainless steel [159] even 
though the stress exponent in these two alloys are 
5.5 and 5, respectively. (2) Dislocations are very 
homogeneously distributed and in A1-Mg alloys 
they are mostly of edge character [41]. (3) They 
are smoothly curved, indicating the existence of a 
glide resistance on a very fine scale. 

Recently, in situ observations of creep phenom- 
ena in a high voltage electron microscope (HVEM) 
using a high-temperature stage have been reported 
for Al - l% Mg [134, 135, 167]. Rather slow 
(v ~10-2 /am sec -1) and continuous motion of 
dislocations was observed, but the total motion 
was not decomposed into glide and climb com- 
ponents. One remarkable observation shows that 
when a moving dislocation approaches a sub- 
boundary, its motion becomes retarded, starting 
from a distance of more than 1 #m away, and after 
passing through the sub-boundary the dislocation 
gradually recovers its velocity [135]. The authors 
attributed this phenomenon to the long range 
stress around the sub-boundary, which does not 
seem likely because in that case the velocity- 
distance relation should be asymmetric owing to 
the nature of internal stress. Although in situ 
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experiments using HVEM have several problems, 
e.g. specimen size effect (although HVEM foils can 
be much thicker than TEM foils, they are still very 
thin relative to the subgrain size), effect of radi- 
ation damage, inhornogeneity of stress, etc., this 
technique has good potential to yield decisive 
information for the mechanism of steady state 
creep in the future. 

3.4. Quantitat ive description of the 
dislocation structure 

3.4. 1. Misorientation o f  sub-boundaries 
Electron-microscopic measurements show that the 
angle of misorientation of sub-boundaries range 
from 0.3 to 1 ~ for A1 [132], 0.3 to 1.2 ~ for Fe 
[120], below 1 ~ (average 0.3 ~ for W [164], 0.2 
to 1.0 ~ for an A1-Mg alloy [136] and 0.1 to 
2.5 ~ for a stainless steel [119]. These values are 
consistent with X-ray results for A1 [99] and Fe 
[107, 168]. Misorientation angles for Ni were 
reported to be of the order of 1 to 2 ~ by X-ray 
measurements [155] and for Cu to be as small as 
0.1 ~ or less by the X-ray (Berg-Barrett) method 
[169], by electron microscopy [142], and by 
etch-pit spacing [110]. The misorientation is 
larger for materials with higher stacking-fault 
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energy [170]. Misorientation angles increase 
gradually with increasing strain during transient 
creep [25, 99, 120, 132, 155, 168], and cease 
increasing when creep becomes steady [99, 120, 
132, 168, 169]. Misorientation angles at steady- 
state creep are almost independent of stress and 
temperature [99, 120, 132]. Examples of change 
of misorientation with creep strain and st.tess for 
A1 and Fe are shown in Fig. 7. 

Considering that sub-boundaries may absorb 
glide dislocations, angles of misorientation may be 
expected to increase with strain. Substantially 
constant misorientation at steady-state creep is 
considered to be a result of the dynamic process of 
formation and annihilation of sub-boundaries 
mentioned above, since the impingement of two 
sub-boundaries always leads to lowering the 
misorientation angle, as pointed out by Exell and 
Warrington [99]. 

hot-working where Jonas et al. [12] report 
m = 1.5. In Table II, values of rn for many 
materials given by different authors are tabulated 
together with the K value defined by 

r = K #b- d (11) 

for cases of m ~ 1. In Fig. 8 the relations between 
d/b and r/# are shown only for single crystal 
specimens. In the evaluation of K (and o 0 in Table 
II and in the plot of Fig. 8 (and Fig. 10), the shear 
modulus # is taken to be the shear modulus at the 
test temperature for the specific slip system of 
each material and r to be the resolved shear stress 
for single crystal specimens, and o/2 for poly- 
crystalline specimens. From Table II and Fig. 8, 
the typical relation which emerges is again that 
given by Equation 11 with the value o f K  ~ 10 for 
metals and 25 ~ 80 for ionic crystals, 

3.4.2. Subgrain size 
The average subgrain size in steady-state creep has 
been measured as a function of stress, temperature 
and/or strain-rate [33, 86, 92, 93,106, 108, 113, 
115-120, 127, 129, 130, 132, 148, 151, 154, 
155,161,171,172] ,  and it has been reported that 
the size is a function only of stress [92, 93, 106, 
113, 119, 129,164],  except in a few exceptional 
cases [117, 120, 131]. The relation has usually 
been written as d ac o-m, and as reviewed by 
others [5, 6, 8, 10, 13, 14, 19] m ~ 1, except in 

3.4.3. Dislocation density 
Dislocation density inside the subgrain as 
measured by electron microscopy or the etch-pit 
method rapidly increases at the initial stage of 
transient creep but gradually decreases until the 
steady-state is reached (A1 [173] ; Cu [110,111] ; 
Fe [120, 148] ; Fe-3% Si [106, 109] ; Mo [114], 
stainless steel [162]; MgO [116], the ratio of 
maximum density to the density at the steady- 
state creep being about 2-5 .  However, the total 
density of dislocations including those composing 

Figure 8 Relation between d/b and r/# at the 
steady-state of single crystal specimens of Fe 
1108], Cu(') [110], Cu (2) [1121, NaCI [115], 
MgO [116], LiF O) [118] and LiF (2) [117]. 
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T A B L E  II  Constants  of  proport ional i ty  and exponents  in s t ruc ture-s t ress  expressions. (OP, optical me thod ;  EP, etch- 
pi t  me thod ;  TEM, transmission electron microscopy).  Symbols are defined by:  p = r t ;  d - r - m ;  z = ~ Izbx/p; r -- Klzb/d 
(% in remarks is given by  r = ro + ,#bx/p ,  otherwise % = 0. Shear modulus  at  test temperature  for active slip system 
was used, r = tr[2 for polyetystals)  

Material Method 1 ~ m K Remarks Reference 

Pure metals 
AI TEM 1 ~ 10 Including data  of  [ 130 ] 

extrusion 
TEM 0.33 0.26 p depends on  T [132] 
EP 2 0.7 Single crystal, z 0 < 0 [173] 
TEM - 1 - 13 Scattered data  [ 127 ] 
etching 0.7 [1711 
OP 0.7 [93] 
T E N  1 - 13 Hot  compression [ 131 ] 

C u  E P  - 1.5 By Strut t  and Gifkins [ 110] 
(cited in [1101 ) 

EP ~ 2  2.6 [113] 
TEM 2 0.6 1 10 High temp. tensile [174] 

test 

Fe T E N  - 2  0.6 ro < 0 [147] 
TEM 0.95 0.4 d depends on T [ 120] 
TEM, EP 1 1 8 Single crystal [ 108 ] 
TEM 2 0.4 [ 146 ] 
TEN ~1  [148] 

TEM - 2  - 0 . 7  - 1  5 Only two data  points  [154] 

EP, TEM ~ 1 No figure [ 164 ] 

TEM - 1  [1511 

Ni 

W 

Zr 

Alloys 

A I - M g  

Cu-Mo 
Cu - N i  
C u - Z n  

F e - C r  
F e - M o  
F e - 3  wt  % Si 

Ca rbo n - s t ee l  

Stainless 
steel 

W - 5  w t % R e  
W - R e  

TEM - 2  0.5 Mg; 3 a t .% and 7 a t .% [41] 
TEM - 1  Mg; 5.5 a t .% [136] 
TEM 1.6 1.5 Mg; 5 at. % [138] 

TEM 1.7 0.35 Mo; 3.5 at. % [152] 
EP - 2  2.6 Ni; 10 at .%, ro > 0 [113] 
TEM 1.4 Zn;  10 at. % [ 145 ] 

TEM 0.7 Cr; 20 at. % [ 150] 
EP, TEM - 1.5 ~0.5  Mo; 4 wt % [ 149] 
EP 1.4 With (1 10)  [ 0 0  I]  [251 

texture  
EP - 2 Excluding region of  [ 106 ] 

lowest stress 
TEM 1 [ 151 ] 
EP - 2 1.4 Except  low stress [ 84 ] 

region 

etching 1 7 [172] 

TEM 2 1.5 Type 316, % < 0 [162] 
TEM - 2  0.4 20 Cr, 35 Ni [1561 
TEM 1.4 - 2.0 - 1 . 0  0.8 - 7  19 Cr, 10 Ni [119] 
T E M - 2  - 1.5 20 Cr, 25 Ni Contain [ 157] 

NbC precipitates 
TEM - 2 1.5 1 18 Slow tensile test  [ 161 ] 

z o < 0 , 1 7 C r , 1 2 N i , 2 M o  

TEM - 2 0.4 [ 165 ] 
TEM 2.2 ~0 .5  Re 25% and 30% 

cited in [165] 
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T A B L E  II continued. 

Material Method l a m K Remarks Reference 

Ionic salts 
LiF 

MgO 

NaC1 EP 

EP l 10;30 Single crystal, K [118] 
depends on orientation 

EP 2 0.7-1.0 - 1 40 ~ 80 For const. ~ / Mg-doped [ 117] 
1 0.7 For const. TJ single 

crystal 

EP, TEM 1.4 0.7 Single crystal [ 116 ] 
TEM - 2 - 1.0 [ 166] 
TEM -2  -0.5 Data with large scatter , [83] 

1 - 25 Single crystal [ 115 ] 

I I I 

IolO Fe 6 0 0  ~ 75 MN m -2 

.~ �9 Ptot 

._~ ~ p 

10 9 
0 t ,  

E 3  ,a 

2x lO 8 I I I 
0 O. I O. 2 0.3 0.4 

Creep stroin 

Figure 9 Change in dislocation density with creep stxain 
for Fe. p is dislocation density inside subgrains as 
measured by transmission electron microscopy, Ps is that 
of dislocations composing subboundaries which is 
estimated from misorientation angle and subgrain size, 
and Ptot is the total density of p + Ps (from [ 151 ] ). 

sub-boundaries has been estimated by Orlova and 
~adek [151] to increase monotonically during 
transient creep and to level off at steady-state 
based on the data on misorientation and sub- 
boundary density. They showed that the ratio of 
density of dislocations inside subgrains to total 
density is only 0.1 for A1 and Fe, and about 1.0 
for Zn [151]. Fig. 9 shows the density change 
with strain for Fe. Dislocation density for Ni 
evaluated by X-ray methods was found to be lower 
in the transient creep region than in the steady- 
state creep region [115,168].  In alloys where sub- 
boundary development is imperfect or altogether 
absent, dislocation density has been reported to 
increase monotonically with creep strain in the 
transient creep region [41, 138, 153, 159]. 

The dislocation density inside subgrains in 
steady-state creep has usually been correlated only 
with stress for many materials [25, 41, 83, 108, 
110, 113, 117, 119, 120, t28,  147, 150, 156-  

159, 161 ,164-166,  171 ,173 ,175] ,  and only in a 
few papers [132, 151] has a correlation with 
temperature been sought. Stress dependence has in 
most cases been written as p ~ o I. The measured 
exponents l are listed in Table II. The exponent I 
is about 2 in the majority of  cases, with the values 
of ct defmed by the following equation also being 
listed in Table II. The value a obtained from 

=- (12)  

is of the order of  unity. Fig. 10 shows the relation 
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state for single crystals of AI [173] ,  Cu O) [110].  CuO) 
[111],  Fe [1081, Mo [114],  MgO [116] and LiF [1171. 
p is dislocation density inside subgrains and r the resolved 
shear stress. 
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between pb 2 and r/12 only for single crystal 
specimens. 

Using the relation Psb = 30/bd, where 0 is the 
average misorientation between subgrains, the 
total dislocation density at steady-state creep is 
expressed from Equations 11 and 12 as 

Ptot = Psb + P 

= + . ( 1 3 )  

For the typical cases for metals, 0 ~ l0  -2, K = 
rd/IJ.b ~ 10, ot "~ 1. With these, Equation 13 is 
reduced to Ptot = (r/12b2)( 0.003 + r/g).  Thus, Psb 
is found to be always larger than p under the usual 
creep conditions of r//a ~ 10 -4 . 

In recent years the distribution of segment 
lengths of dislocations forming three-dimensional 
networks has been measured by means of trans- 
mission electron microscopy for stainless steel 
[160, 176] and MgO [83]. Fig. 11 shows the 
distribution for MgO obtained by Bilde-S6rensen 
[83]. 

1.0~ / ~  , , ' MgO't 

1 
Oo V o J 

Figure 11 Average distribution function of segment 
lengths of dislocations at steady-state creep for four 
polycrystalline MgO specimens, F, is the average segment 
length. Arrows indicate the critical length of #b/r for four 
specimens (from [83] ). 

4. T rans ien t  e x p e r i m e n t s  
To measure the recovery rate under stress, to 
determine the effect of stress history on creep 
rate, and to check the Bailey-Orowan equation, 
stress change experiments have been performed by 
many researchers [35, 77, 113, 119, 147, 177-  
198]. Also, for the purpose of investigating the 
presence of internal stress, so-called stress- (or 
strain-) dip tests have been performed in recent 
years [39, 6 2 , 1 4 3 , 1 5 2 , 1 9 9 - 2 1 0 ] .  

4 .1 .  B a i l e y - O r o w a n  equa t ion  
Assuming that the applied stress in creep is a func- 

tion of time and strain, 

do = dt + 
e t 

= - - rd t  + hde ,  

de 

(14) 

where r and h are defined as the recovery rate and 
the work-hardening rate, respectively. In constant 
stress creep where do = 0, Equation 14 leads to 
the Bailey-Orowan equation [211,212] .  Creep 
phenomena determined by this equation are caned 
"recovery controlled" creep (see Section 5). An 
experiment to confirm this equation was per- 
formed by Mitra and McLean [185]. 

Experimentally, r is determined by measuring 
the incubation time for recommencement of  creep 
strain after a stress reduction, i.e. r =  
( A o / A t ) a o ~ o ,  see Fig. 12. The plateau region 
after a reduction of stress has earlier been investi- 
gated by Kennedy [178]. The work-hardening rate 
h has been determined by either one of two 
methods; one is the method by Mitra and McLean 
[154, 185], where h is approximated by the work- 
hardening rate at the creep stress in the stress- 
strain curve obtained at room temperature after 
the creep test; the other is the method first done 
by Ishida and McLean [147], where an instan- 
taneous plastic strain increment Ae after an 
instantaneous stress increase Ao is measured 
(see Fig. 12), and h is estimated by h = 
(Ao /Ae)ao-+o .  The latter method has been used 
most often. 

-Ao-  

f-r j 

Ao- 

Figure 12 Schematic representation of the method for 
estimating recovery rate, r, and work-hardening rate, h, 
by means of the stress change method. Aeel means elastic 
strain increment resulting from stress increase. 
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Figure 13 Change in recovery rate, r, and work-hardening 
rate, h, with creep strain for a MgO single crystal, 
estimated by the stress change method shown in Fig. 12 
[197]. 

The changes of r and h with creep time have 
been measured for s-brass [187], Ni-20% Cr 
[188], MgO [196, 197] and Cu-15% A1 [35]. 
As shown in Fig. 13, r decreases and h increases in 
the transient creep region and both level off in 
steady-state, where h levels off  earlier, in general, 
than r. In steady-state the value of r/h obtained 
in the above-mentioned manner has been com- 
pared with is for many materials; Ni and AI 
[185, 154], Fe [147], MgO [195,197],  Cu-15% 
A1 [35], t~-brass [187], Ni-Co alloys [77] and 
Ni-20% Cr [188]. All these results showed an 
order-of-magnitude agreement. Mitra and McLean 
[154] reported that the agreement is obtained also 
for the transient region after a stress reduction 
[154]. Stress dependence o f r  and h in the steady- 
state creep region are: r ~ o 3 to 03.5 and h cc o-1 
to o -l 's for Ni and A1 [185]; r ~ e s  and h 
constant for Cu-16% AI [35]. It should be noted 
that the measured h is always unusually high and 
of the order of shear modulus (see a table in 
[194] ), this makes the method for determining h 
suspect. 

As will be mentioned later, the creep behaviour 
after a stress change is complex and the above 
experiments cannot be interpreted in a simple 
way. Fig. 14 shows the change in oi, the internal 
stress, (see Section 4.2) with strain for A1 and 
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True sir�9 % 

Figure 14 Creep curves (upper) and change of tr i with 
strain flower) for A1 and A1-5 wt % Mg (from [39] ). 

A1-5 wt % Mg, together with creep curves. The 
decrease of the observed internal stress with strain 
in the transient creep region in A1-5 wt %Mg 
where the curvature is positive is difficult to be 
rationalized considering the continuous increase of 
the dislocation density in this alloy as mentioned 
in Section 3. 

4.2.  Internal  stress 
After an instantaneous stress reduction, close 
examination shows that if the stress is kept con- 
stant, the subsequent strain-rate is positive or 
negative, and if the specimen length is kept con- 
stant, the stress begins to decrease (relaxation) or 
increase, depending upon the amount of stress 
reduction. The former type of  experiment is called 
the stress-dip test, while the latter is called the 
strain-dip test. On the basis of the simple concept 
of internal stress, the critical stress in these tests 
where the subsequent initial strain-rate is zero has 
been regarded as an internal stress as was done by 
Gibbs [199]. These techniques have been applied 
to many materials to estimate the internal stress 
(Mg [199], Cu and its alloys [143, 204, 205], 
Fe and its alloys [62, 153, 175,200,  202, 209, 

1555  



120 I I I I I /4 I I / 
c AI 260~ / 
b AI 340*C / o-i A c AI 5.5at.% Mg 300~ / ~ = 1.0 

I00 -- d AI 5.5ot% Mg 400~ / o / / f---"-" 
e Cu 530 C / / i  / . 
f Fe (I) 475 ~ 700'~ . /  / / / /  

80-- g Fe(2)700~ / /  / /  . / / ' '  - 
h Fe-3.5 at.% Mo 850"C / ~ / / "  
i Fe-l.5~3at.%Ni 500"C, 600"C / / " / / _  ~ =0.5 / 
j Fe-3.5 wt% Si 550-7OO~ j / / "  ~ = u ~ , , . I -  

~E 60-- k Ni 7500C / ~ / / "  / j  - 
z I N i -  10.3 at.*/, W 9,00~ / /  / ./- / 

m e-Zr 500-750~ f / / /  / / 5 -  

~  

- 

o , 
O 20 40 60 80 IO0 120 140 160 180 

cr, MN m "z 

Figure 15 o i versus cr relations for various materials (A1 [203], A1-5.5 at.%Mg [208], Cu [143], Fe O) [175], Fe O) 
[209], Fe-3.5at.%Mo [209], Fe-l.5 to 3at.% Ni [62] Fe-3.5at.%Si [202],Ni [209],Ni-10.3at.%W [209] 
and c~-Zr [206] ). 

210], A1 and its alloys [39, 6 0 , 2 0 3 , 2 0 7 , 2 0 8 ] ,  
Zr [206], and Ni and its alloys [63 ,209] .  The 
internal stress o i obtained in this manner increases 
or decreases with strain and levels off at steady- 
state creep [39 ,210]) .  Fig. 14 shows the change 
in ai with strain for A1 and A1-5 wt % Mg (class I 
alloy), together with creep curves. The ratio of 
internal stress to the stress for steady-state creep 
is generally a function of stress and temperature. 
Fig. 15 shows examples for many materials. In 
some cases, ai is proportional to stress with a 
proportionality constant of  0.4 (for Fe-3.5  % Si 
[202]) and 0.5 (for a-Zr [206]), but in other 
cases the ratio oi/a is a decreasing function of 
stress. Oikawa and Karashima reported that the 
values of the ratio for alloys do not necessarily 
correlate with the classes to which they belong 
[209]. As stated in the next section a simple 
interpretation of this experiment is not easy, 
although the origin of  the internal stress has been 
discussed by many authors [45, 58, 119,204,214,  
2151. 

4.3.  C o m p l e x  behav iou r  a f te r  stress change 
Real creep behaviour after stress change is not so 
simple as was assumed in previous sections. A 
simple interpretation of the incubation period is 
that it is the time taken for the three-dimensional 
network to grow in size corresponding to the new 

stress [213]. The strain-rate resumed after an 
incubation time in the stress dip test, however, 
does not correspond to the steady-state creep rate 
at that reduced stress [77, 113, 154, 181, 192, 
197]. It has been shown that the transient region 
before the final steady-state consists of two stages 
as shown in Fig. 16 [77, 192, 197, 204]. Mitra 
and McLean showed for Ni that during 0.5% strain 

-/ka- 

(a) 

(b) 

Figure 16 Schematic drawing of the transient behaviour 
of the creep curve after a stress-drop at steady-state for 
pure metals (a) and for class I alloys (b). 
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increment after the stress reduction, no detectable 
change in dislocation density occurs [154]. They 
interpreted that the strain increment might be 
brought about by the motion of a small fraction 
of long dislocation segments composing the three- 
dimensional network. Birch and Wilshire inter- 
preted that during stage I (Fig. 16) only network 
growth occurs and in stage II subgrain growth 
takes place as well as continued network growth 
until the final steady-stage structure is attained 
[197]. For class I alloys (A1-Mg [183], Cu-Au 
[113]), on the other hand, the strain-rate after 
the stress reduction is faster than the steady-state 
value as schematically shown in Fig. 16. 

The stress dependence of the initial creep rate 
following the incubation time was measured for Ni 
and A1 by Mitra and McLean [154]. As shown in 
Fig. 17, the stress exponent doubles compared 
with that for steady-state creep. Considering that 
little change in structure occurs during this 
measurement, the above dependence may be taken 
as that for a constant structure test. Constant 
structure tests by this stress reduction method 
have first been performed by Sherby et  al. for A1 
[180], and later for stainless steel by Cuddy 
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Figure 17 Stress dependence of the initial creep rate after 
various amounts of stress reduction at steady-state creep 
of AI. Solid marks indicate initial states. Dashed lines are 
the stress dependence of e s for each temperature (from 
[154]). 

[119]. Using the same technique, Robinson et  al. 

[216-218] showed the relationship among 
d and a of the form e = dP(o /E)N;  P = 2, N = 7 

for W and P = 3, N = 7 for A1. However, another 
structure parameter p is always related to d at 
steady-state and the above relation must have been 
obtained for various values of  p: consequently, it 
cannot simply be interpreted to indicate the effect 
of  subgrain size on the creep rate. 

As seen in dip-tests for internal stress measure- 
ments, the creep curve during the incubation 
period is, in general, not exactly constant. Lubahn 
as early as 1953 [179] measured creep recovery 
strain cr after partly or fully unloading a commer- 
cial steel and found that er increases linearly with 
the amount of stress decrement. On the other 
hand, forward strain (during a standard unloading 
period) is of the form e~ ~ o n (n >> 1). From 
these facts, Lubahn explained the finite limiting 
reduced stress below which no substantial positive 
creep strain is observed. He also suggested er to be 
of  anelastic nature. Bayce et al. [183] also inter- 
preted the transient creep curve after a stress 
reduction in the primary creep region of A to be 
composed of recovery creep and forward creep. 
Henderson and Snedden [219] measured re- 
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Figure18 A series of transient curves after various 
amounts of stress drops. Creep strain after a stress drop is 
decomposed into two components, recovery strain, e r, 
and forward creep strain, ef (see [194] ). 
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covery strain of Cu and discussed its relation to 
the transient creep strain. These experiments 
showed that er after unloading is of the order of 
10 "~ to 10 -a . Davies and Wilshire showed that the 
instantaneous contraction of the specimen 
accompanying a stress reduction contains a con- 
siderable plastic recovery component in addition 
to the elastic contraction [201]. In Fig. 18, 
transient curves after various amounts of stress 
reduction are schematically drawn. Lloyd and 
McElroy showed recently that the incubation time 
following a stress reduction can be interpreted to 
be the time during which forward strain is approxi- 
mately equal to the anelastic recovery strain which 
is linear with the stress reduction Ao, see Fig. 18 
[194]. According to this interpretation, At ~ 
er/df and thus r =  A o l A t ~ A o  (eiler), which 
implies that r no longer means a simple recovery 
rate. They also showed that the observed equality, 
e = r/h, can be rationalized by assuming that the 
observed strain increment after a stress increase is 
due to anelastic strain, i.e. h = Ao/er. Such an 
interpretation leads to the further conclusion that 
o i obtained in the dip test does not correspond to 
the internal stress in a static sense but it corre- 
sponds to the stress at which the initial anelastic 
strain-rate is equal to the forward strain-rate. 

In stress reversal experiments an acceleration of 
the creep rate has been reported for Pb [177], A1 
[220] and stainless steel [191 ]. Wilson interpreted 
the Bauschinger effect, as well as the recovery 
creep after unloading to be an anelastic phenom- 
enon resulting from back motion of dislocations 
[1911. 

As stated previously, sub-boundaries are mobile 
under the action of the applied stress and their 
motion contributes to a considerable fraction of 
the total strain. As a consequence, in addition to 
the back motion of bowed-out dislocations [191, 
194], straightening of bulged sub-boundaries after 
an instantaneous stress drop is considered to be an 
important contribution to the anelastic strain. 

In summary, simple interpretations of the 
results of transients in creep experiments discussed 
in Sections 4.1 and 4.2 are generally of doubtful 
validity. 

5. Proposed models for steady-state creep 
5.1. Grain-boundary sliding 
Sliding of grains along boundaries in creep has 
been known for a long time. Many investigators 
have specifically measured the amount of sliding 

1558 

along grain boundaries during creep [221], and 
have tried to estimate the contribution of such 
sliding to the total creep strain [222]. Such esti- 
mates have always ranged from very small frac- 
tions to very very large fractions. That grain- 
boundary sliding is not an independent mechanism 
producing steady creep strain has been pointed out 
by a number of investigators [223]. More 
recently, Raj and Ashby [224] presented mechan- 
istic models showing that in steady-state creep 
grain-boundary sliding must be integrally con- 
nected with intra-crystalline creep deformation. 
The effect of coupled grain-boundary sliding and 
intra-crystalline creep on the overall creep law has 
been studied by Hart [225] and by Crossman and 
Ashby [226]. The latter point out that both when 
the boundaries slide freely (transmitting no shear 
traction) and when they do not slide at all there is 
no effect of the boundaries on the overall creep 
law, even though in the first case, the stress and 
strain-rate distribution in the polycrystal is highly 
inhomogeneous. The largest effect of the sliding 
boundaries on the overall creep law occurs when 
the average relative sliding displacement rate u 
across the boundary is about equal to the relative 
creep shear displacement across the grain, i.e. 
when: 

u = w - -  = d ( 1 5 )  
rib 

where w and rib are the effective thickness of the 
grain boundary and its effective shear viscosity, 
while A is a constant and r is the average local 
shear stress. Other terms have their previously 
def'med meaning. It can be shown readily that at 
the transition from free sliding to no sliding where 
the above condition holds, the average shear stress 

and the intra-crystalline shear strain-rates 7~ 
respectively 

~" = Ix (16) 

(w),.-, 
= A 0 7 )  

Furthermore, at the transition where the effect of 
the grain-boundary sliding is maximum, the effec- 
tive creep exponent n t di:ops down to a value of 



5.2. Phenomenological description of 
steady-state creep 

In steady-state creep it is necessary that some con  
dition for internal structural balance be satisfied. 
It must be noted that in its statement, the Bailey- 
Orowan equation does not mean a steady-state, 
but only a state of constant stress. At a given 
external condition, the creep rate is determined by 
the microstructure parameters Si, such as the dis- 
location density, i.e. 

= f(&o, 7 ) .  (19) 

On the other hand, since the microstructure 
changes with time (due to recovery) and strain 
(due to work-hardening), the steady-state con- 
dition under a constant stress is: 

= [~Sit dt [~Sil 
dSi \-'~)e + \'~-ff-e )t  de = 0, (20) 

which gives: 

- OSi/at)e (21) 
(a&lae) t 

Therefore, a steady strain-rate and a steady-state 
structure are realized when Equations 19 and 21 
are satisfied simultaneously. This argument was 
first advanced by Cottrell and Aytekin [29], who 
regarded Si as an average internal stress. Recently, 
similar but more refined treatments have been 
given by Gittus [227 ,228] ,  Gibbs [229], Kocks 
[230], and Grant [231], using hypothetical or 
empirical functional forms for Si. Generally, both 
Equations 19 and 20 can involve different rate 
processes. As a result, the observed activation 
process of es could be of a complex form. Experi- 
ments show, however, that the observed activation 
energy is very close to Qsd, which seems to indi- 
cate that es is governed by a simple activation 
process. Thus, it is natural to consider the follow- 
ing two extreme cases: 

(1) The deformation mechanism is itself of 
athermal nature and (aSi/at)e is governed by self- 
diffusion. In this case, Equation 19 is written as 
f(Si, o )  = 0. Hence Equation 21 is reduced to the 
Bailey- Orowan equation, i.e. 

i - (osi/ot), _ - (0o/0t )~(dSi /do)~ = 

(a&/ae)t (ao/ae)t (dSi/do)t 

- (aolat)~ r 
- ( 2 2 )  

(ao/ae)t h 

It should be noted, in this context, that the struc- 
ture need not depend only on a single parameter 
which is a function of stress, because if this were 
so, a constant stress would always lead to a con- 
stant structure, and hence, to a constant strain- 
rate. In this respect, Alden's theory of plastic flow 
[232] is different, where two structure para- 
meters, a density parameter and an arrangement 
parameter, are introduced and the strain-rate is 
formulated taking the recovery of both parameters 
into account. 

(2) Another case is that the structure para- 
meter, Si, is determined only by e under a con- 
stant o, independently of r so that Si is not 
related by Equation 21. The activation process in 
creep deformation is that which is involved in glide 
(Equation 19) with the activation energy of Qsd. 

The former type of creep is called "recovery 
controlled" and the latter "glide controlled". 
In the following, we will survey, in historical 
order, the proposed models based on dislocation 
processes. 

5.3. Models for steady-state creep 
5.3. 1. Climb-controlled glide model 
Weertman first formulated a model where the 
creep rate is controlled by the escape rate, by 
means of climb, of leading dislocations pried up at 
obstacles [49], and later modified the original 
theory [10]. Using a model of multipole for- 
mation by Hazzledine, Weertman calculated the 
annihilation rate of dipoles and obtained 
es o~ p.D/kT. (a//a) 4"5 under the assumption of 
constant number of dislocation sources. The 
successful feature of his theory is in the correct 
stress exponent, in contrast to other theories in 
which an exponent larger than 4 has not been 
obtainable. This model, however, does 'not seem 
to be supported by direct observations, as already 
discussed by many researchers. 

5.3.2. Viscous glide model 
This model is applicable only to solid solution 
alloys, where the viscous glide of dislocations, 
dragging solute atmosphere, governs the defor- 
mation. Weertman deduced a third power re- 
lation from the linear viscous motion of pried-up 
dislocations [50], which again is not supported 
by electron micrographs of dislocation structures 
in alloys. Friedel treated the dislocation l ine-  
tension-assisted diffusion of pinning atoms, and 
obtained a simple form of es~2pDob3/kT 
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[233]. Using an empirical relation of o ~labx/p,  
Bird et al. showed a good agreement between the 
above equation and experiments (see Fig. 10 of 
[14]). The agreement, however, appears to be 
fortuitous because Friedel's theory is essentially 
based on a dilute solid solution, although the 
result is independent of concentration. In any 
case, linear viscous motion of dislocations and the 
2nd power dependence of p on stress lead to the 
dependence of the strain-rate on the third power 
of the stress. The relation of p o: o 2 at the steady- 
state follows from a balance equation such as 
Equation 21. Horiuchi and Otsuka [41] obtained 
the above result from the equation of es = pbv 
(where v cc o), and the balance equation between 
the multiplication rate of dislocations (which is 
assumed to be proportional to is) and the annihil- 
ation rate by climb (which is assumed to be 
proportional to the density of dislocations times 
the reciprocal of their spacing). Their assumptions, 
however, are questionable, e.g. the annihilation 
time of a trapped pair should be proportional 
roughly to the inverse square of the spacing. 

5.3.3 Jog-dragging screw model 
The motion of a jogged screw dislocation was 
discussed by Mott 25 years ago [234] and was 
applied later to the temperature dependence of the 
flow stress of pure metals in the high temperature 
region by I-lirsch and Warrington [235]. Dorn and 
Mote [5] formulated, in more detail, the ther- 
mally activated motion of a jogged screw dislo- 
cation under stress under the condition of 
equilibrium vacancy concentration near jogs. 
Barrett and Nix [55] calculated the dislocation 
velocity under the condition of steady flow of 
vacancies to and from jogs. Revisions and modifi- 
cations of the theory have been done several times 
[236-240] .  These treatments all give a o - v  
relation for a single dislocation (at low stress 
o oc v). The mobile dislocation density, Pro, must 
be determined from another condition. A reason- 
able derivation of a O-Pra relationship to give the 
observed stress exponent of es has, however, not 
been given. Furthermore, owing to the statistical 
variation of jog spacings, line density of jogs 
previously formed must always decrease due to the 
conservative motion of jogs on screw dislocations 
[241] and thus the motion of a jogged screw 
dislocation is essentially unstable, unless the 
thermal production rate of jogs is larger than their 
rate of annihilation. A simple calculation shows 
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readily that the thermal equilibrium concentration 
under stress &jogs on a straight screw dislocation 
is negligibly small under the usual test condition. 

5.3.4. Network growth model 
On the basis of Friedel's network recovery theory 
[233], Mitra and McLean [185] deduced a recov- 
ery rate with a third power of stress dependence, 
in agreement with their stress-dip test. From the 
network growth rate of dX/dt oc ~-1 by Friedel 
and the assumption o oc ~-1, where Xis the average 
network spacing, 

e e ~ -  oc ~--g. (23) 

Combined with the experimental fact of h c c  O -1.5 
(see Section 4.1), they explained the observed 
stress exponent. Lagneborg later refined this 
theory [242,243].  Gittus also formulated a creep 
equation along the same lines [244, 245]. Con 
sidering that the exact meaning of the dip-test is 
not clear, as mentioned in Section 4.3, qualitative 
agreement between this model and the transient 
experiment does not necessarily signify validity of 
this model. 

If the creep stress were uniquely related to X, 
then after a reduction of stress, no further creep 
strain would appear until X increases to the value 
corresponding to the reduced stress, which is not 
in agreement with experimental facts (see Section 
4.3). Thus, the distribution of dislocation segment 
lengths and its change with time have been used 
rather than the average value to explain experi- 
mental results on the creep transient in the dip test 
[154, 157, 194]. In these treatments, only a 
fractional number of segments whose lengths 
grow to the critical length contribute to defor- 
mation. Such a process must be labelled as 
exhaustion hardening, rather than barrier harden- 
ing. Lagneborg et al. [246] recently performed a 
detailed statistical treatment on the change of the 
distribution function of 3. by recovery and com- 
pared with experimental data. 

5.3. 5. Diffusional model 
Nabarro assumed a special type of regular array 
of edge dislocations with two sets of Burgers 
vectors, their spacing being determined by the 
applied stress. He calculated the creep rate due 
to a steady climb motion of these dislocations 
(with no accompanying glide) and obtained a third 



power law for the stress dependence [247]. 
Dupouy modified this theory taking the effect of 
periodic internal stresses into consideration, and 
showed that the stress exponent can then be very 
large [248]. These models bring up the point that 
there is no reliable means by which the various 
contributions of glide and climb to the overall 
creep strain can be determined. The reacted net- 
work configuration of Nabarro is also not free of 
problems since neighbouring segments with dif- 
ferent Burgers vectors must climb in different 
directions which leads to the destruction of the 
network. 

5 . 3 . 6 .  Sub-boundary recovery model 
Based on the easy climb motion of knitted dis- 
locations on sub-boundaries, Lindroos and 
Miekk-oja proposed a model that the creep rate 
is controlled by successive annihilation of two 
groups of dislocations with opposite signs that 
are climbing up and down along the sub-boundary 
after gliding from the opposite sides of the adjoin- 
ing subgrains to knit it [249]. This model also 
requires dislocation pile-ups against the sub- 
boundary, which are not observed. 

Blum [250] proposed a model that the sub- 
boundary regions with a high dislocation density 
(cell boundary) act as dislocation barriers and that 
the recovery rate of dislocations in this area con- 
trois the deformation rate. This model cannot be 
applied to the case of  well-knitted sub-boundaries. 

5.4. Concluding remarks 
It may be concluded that class I alloys are con- 
trolled by linear viscous motion of dislocations. 
The present authors worked out a theory where 
the structure balance due to production and 
annihilation of dislocations was treated in detail 
[251 ]. For other materials, it may be said at the 
present time, that existing theories or models are 
not fully successful in explaining experiments. 
Among them, only the network growth model 
seems to be compatible with the results of direct 
observation. However, the following points are 
worth making: 

(1) Friedel's network recovery theory used in 
deriving Equation 23 does not take the effect of 
applied stress into account. In reality, however, 
there is a well-known effect that the cold-worked 
materials recover much faster under stress than 
under no stress (see for A1 [252-254]) ,  indi- 
cating an important role of dynamic recovery. 

Kocks [255] recently produced arguments for the 
existence of a saturation stress in the constant 
strain-rate tests over the whole temperature 
range, and explained it by a dynamic recovery 
process. 

(2) As shown below, the steady-state creep rate 
in the network growth theory should always be 
proportional approximately to 03 as long as the 
principle of similitude holds, i.e. the dislocation 
behaviour is identical when the length dimension 
is normalized by X which is inversely proportional 
to cr and the time scale is appropriately normal- 
ized. From dimensional arguments, --(3X/Oe)t  o: 
X 2 -  note that 6 e = b x ( a r e a  swept by dislo- 
cations)/(unit volume) cc X -1 _ which corresponds 
to a constant work-hardening rate. The rate of 
growth of networks, on the other hand, takes 
place by climb motion due to interaction between 
dislocations, the velocity of the ith dislocation be- 
ing given by the form v i oc (In X/b)~ai jr~  1 , where 
r~/ is the distance between ith and jth dislocation 
and aij is a geometric factor. The factor In X/b 
comes in as the outer cut-off radius of the dif- 
fusion controlled climbing process. Thus, the rate 
of growth of network spacing is given by the form 
of ( ~ / a t ) e  cx In (X/b)/X. Hence, 

_ 

~x ln (~./b)/~ 3 

~o 3 , (24) 

where ~ is an insensitive function of o. Therefore, 
to explain the observed stress exponent, we must 
make some assumption that violates similitude, 
i.e. either the work-hardening rate is not a con 
stant value but a decreasing function of stress 
[11, 185, 244] or the recovery rate is a more 
sensitive function of stress than the similitude 
principle shows [35 ]. These are, however, difficult 
to be rationalized within the framework of the 
network growth model. 

(3) The role of  sub-boundaries are not yet clear. 
The stress-subgrain relation of Equation 11 itself 
has never been explained except by the theory 
of cell formation of Holt [256], which gives only 
the initial conditions of instability of networks. 
The mobile nature of sub-boundaries under stress 
mentioned in Section 3.1. is important in the 
dynamic recovery because their motion results in 
the scavenging of network dislocations. Also, if the 
new sub-boundaries are formed by a recovery 

1561 



process  o f  n e t w o r k  d i s loca t ions  due to  some 

ins t ab i l i t y  e f fec t ,  as in  t he  Hol t  t h e o r y ,  t h e n  the  

subgra in  g r o w t h  due  to  s u b - b o u n d a r y  m i g r a t i o n  

serves as a large r ecove ry  because  Ps is an  o rde r  o f  

m a g n i t u d e  larger  t h a n  p as m e n t i o n e d  in Sec t i on  3. 

The  poss ible  r ecovery  due  t o  s u b - b o u n d a r y  m o t i o n  

has  a l ready  b e e n  p o i n t e d  o u t  b y  o the r s  [ 1 1 4 , 1 8 4 ,  

2 5 7 ] .  

A t  a n y  ra te ,  t o  ver i fy  w h i c h  recovery  process  is 

t he  m a i n ,  con t ro l l i ng  process ,  i t  appears  to  be  

necessa ry  to  p e r f o r m  c o n t i n u o u s  obse rva t ions  o f  

s t ruc tu re s  b y  var ious  t e c h n i q u e s .  

References 

1. A. H. SULLY,Prog. Mater. Sci. 6 (1956) 135. 
2. H. CONRAD, m "Mechanical Behaviour of Materials 

a t  Elevated Temperatures, edited by J. E. Dorn 
(McGraw-Hill, New York, 1961) p. 149. 

3. G. SCHOECK, ibid p. 79. 
4. D. MCLEAN, Met. Rev. 7 (1962)481.  
5. J. E. DORN and J. D. MOTE, in "High Temperature 

Structure and Materials", edited by A. M. 
Freudenthal, B. A. Boley and H. Liebowitz 
(Pergamon Press, Oxford, 1964) p. 95. 

6. F. GAROFALO, "Fundamentals of Creep and Creep-, 
Rupture in Metals" (MacMillan, New York, 1965). 

7. D. MCLEAN, Rep. Prog. Phys. 29 (1966) 1. 
8. O. D. SHERBY and P. M. BURKE, Prog. Mater. ScL 

13 (1967) 325. 
9. L. M. T. HOPKIN, Prog. Appl. Mater. Res. 7 (1967) 

33. 
10. J. WEERTMAN, Trans. ASM61 (1968) 680. 
11. D. MCLEAN, Trans. Met. Soc. AIME 242 (1968) 

1193. 
12. J. J. JONAS, C. M. SELLARS and W. J. McG. 

TEGART,Met.  Rev. 14 (1969) 1. 
13. A. K. MUKHERJEE, J. E. BIRD and J. E. DORN, 

Trans. ASM 62 (1969) 155. 
14. J. E. BIRD, A. K. MUKHERJEE and J. E. DORN, in 

"Quantitative Relation Between Properties and 
Microstructure", edited by D. G. Brandon and A. 
Rosen (Israel Univ. Press, Jerusalem, 1969) p. 255; 

15. F. R. N. NABARRO, in "Report of a Conference on 
the Strength of Solids" (The Physical Society, 
London, 1948) p. 75. 

16. C. HERRING,J. Appl. Phys. 21 (1950) 437. 
17. R. L. COBLE, ibid 34 (1963) 1679. 
18. J. HARPER and J. E. DORN, Acta Met. 5 (1957) 

654. 
19. G. J. DAVIES, J. W. EDINGTON, C. P. CUTLER 

and K. A, PADMANABHAN,J. Mater. Sci. 5 (1970) 
1091. 

20. C. R. BARRETT, J. L. LYTTON and O. D. 
SHERBY, Trans. Met. Soc. AIME 239 (1967) 170. 

21. D. MCLEAN, J. Inst. Metals 80 (1951-2)  507. 
22. B. FAZAN, O. D. SHERBY and J. E. DORN, Trans. 

Met. Soc. AIME 200 (1954) 919. 
23. D. MCLEAN and M. H. FARMER,J. Inst. Metals 85 

(1956-57)  41. 

1562 

24. H. BRUNNER and N. J. GRANT, Trans. Met. Soe. 
AIME 215 (1959) 48. 

25. J. L. LYTTON, C. R. BARRETT and O. D. 
SHERBY, ibid 233 (1965) 1399. 

26. H. C. CHANG and N. J. GRANT, ibid 197 (1953) 
1175. 

27. Idem, J. Inst. Metals 82 (1953-54)  229. 
28. E. N. DA C. ANDRADE, Proc. Roy. Soc. (London) 

A84 (1911) 1. 
29. A. H. COTTRELL and V. AYTEKIN,J. Inst. Metals 

77 (1950) 389. 
30. J. B. CONWAY and M. J. MULLIKIN, Trans. Met. 

Soc. AIME 236 (1966) 1496. 
31. P. G. MCVETTY,Mech. Eng. 56 (1934) 149. 
32. G. A. WEBSTER, A. P. D. COX and J. E. DORN, 

Metal Sci. J. 3 (1969) 221. 
33. F. GAROFALO, C. RICHMOND, W. F. DOMIS and 

F. VON GEMMINGEN, Joint International Con- 
ference on Creep, 1963 (Inst. Mech. Engineers, 
London, 1965) p. 1 -31 .  

34. W. J. EVANS and B. WlLSHIRE, Trans. Met. Soc. 
AIME 242 (1968) 1303. 

35.1dem, MetaISci. J. 4 (1970) 89. 
36. J. C. M. LI, ActaMet. 11 (1963) 1269. 
37. W. G. JOHNSTON and J. J. GILMAN, Jr. AppL Phys. 

30 (1959) 129. 
38. H. LAKS, C. D. WISEMAN, O. D. SHERBY and 

J. E. DORN, J. AppL Mech. 24 (1957) 207. 
39. C. N. AHLQUIST and W. D. NIX, Acta Met. 19 

(1971) 373. 
40. T. IIKUBO, H. OIKAWA and S. KARASHIMA, 

Scripta Met. 5 (1971) 837. 
41. R. HORIUCHI and M. OTSUKA, Trans. Jap. lnst. 

Metals 13 (1972) 284. 
42. W. J. EVANS and B. WlLSHIRE, Met. Trans. 

1 (1970) 2133. 
43. R. A. MENEZES and W. D. NIX, Acta Met. 19 

(1971) 645. 
44. W. A. COGHLAN, R. A. MENEZES and W. D. 

NIX, Phil. Mag. 23 (1971) 1515. 
45. T. HASEGAWA' Y. IKEUCHI and S. KARASHIMA, 

MetaIScL Z 6 (1972) 78. 
46. H. ALEXANDER and P. HAASEN, SoL Stat. Phys. 

22 (1968) 27. 
47. B. ANCKER, T. H. HAZLETT and E. R. PARKER, 

Trans. Met. Soc. AIME 27 (1956) 333. 
48. J. WEERTMAN, jr. Appl. Phys. 26 (1955) 1213. 
49. Idem, ibm 28 (1957) 362. 
50. Idem, ibid 28 (1957) 1185. 
51. F. GAROFALO, Trans. Met. Soe. AIME 227 (1963) 

351. 
52. C. M. SELLARS and W. J. Mc G. TEGART, Mem 

ScL Rev. Metal. 63 (1966) 731. 
53. J. J. JONAS, D. R. AXELRAD and J. L. UVIRA 

Trans. Jap. Inst. Metals Suppl. 9 (1968) 257. 
54. J. L. UVIRA and J. J. JONAS, Trans. Met. Soc. 

AIME 242 (1968) 1619. 
55. C. R. BARRETT and W. D. NIX, Acta Met. 13 

(1965) 1247. 
56. Y. ISHIDA, C. Y. CHANG and J. E. DORN, Trans. 

Met. SocAIME 236 (1966) 964 
57. N. BALASUBRAMANIAN and J. C. M. LI, or. Mater. 



Sci. 5 (1970) 434. 
58. J. J. JONAS,ActaMet.  17 (1969) 397. 
59. F. A. NICHOLS, Mater Sci. Eng. 8 (1971) 108. 
60. K. KUCHAROVtk and J. CADEK, Phys. Stat. Sol. 

(a) 6 (1971) 33. 
61. B. REPPICH and G. STREB, ibid 15 (1973) 77. 
62. L. J. CUDDY and J. C. RALEY, Acta Met. 21 

(1973) 427. 
63. H. OIKAWA, T. KATO and S. KARASHIMA, Trans. 

Jap. Inst. Metals 14 (1973) 389. 
64. T, HASEGAWA, S. KARASHIMA and Y. IKEUCHI, 

Acta Met. 21 (1973) 887. 
65. J. E. DORN, in "Creep and Recovery" (ASM, 

Cleveland, Ohio, 1957) p. 255. 
66. O. D. SHERBY and J. L. LYTTON, Trans. Met. Soc. 

AIME 206 (1956) 928. 
67. O. D. SHERI3Y, ibid 212 (1958) 708. 
68. C. R. BARRETT, A. J. ARDELL and O. D. 

SHERBY, ibid 230 (1964) 200. 
69. S. L. ROBINSON, P. M. BURKE and O. D. 

SHERBY, Phil. Mag. 29 (1974) 423. 
70. J. WEERTMAN, Trans. Met. Soc. AIME 218 (1960) 

207. 
71. C. M. SELLARS and A, G. QUARRELL, J. Inst. 

Metals 90 (1961-62) 329, 
72. F. A. MOHAMED and G. LANGDON, Aeta. Met. 

22 (1974) 779. 
73. W. R. CANNON and O. D. SHERBY, Met. Trans. 

1 (1970) 1030. 
74. K. L. MURTY, Phil. Mag. 29 (1974) 429, 
75. F. A. MOHAMED and T. G. LANGDON, Met. 

Trans. 6A (1975) 927. 
76. C. R. BARRETT and O. D. SHERBY, Trans. Met. 

Soc. A1ME 233 (1965) 1116. 
77. C. K. L. DAVIES, P. W. DAVIES and B. WlLSHIRE, 

Phil. Mag. 12 (1965) 827. 
78. R. M. BONESTEEL and O. D. SHERBY, Acta Met. 

14 (1966) 385. 
79. J. HEDWORTH and G. POLLARD, Metal Sci. J. 5 

(1971) 41. 
80. H. OIKAWA and S. KARASHIMA, Scripta Met. 5 

(1971) 909. 
81. F. A. MOHAMED and T. G. LANGDON, Jr. Appl. 

Phys. 45 (1974) 1965. 
82. T. G. LANGDON and J. A. PASK, Acta Met. 18 

(1970) 505. 
83. J. B. BILDE-S()RENSEN, ibid 21 (1973) 1495. 
84. C. H. M. JENKINS and G. A. MELLOR, J. lron 

Steellnst. 132 (1935) 179. 
85. G. R. WlLMS and W. A. WOOD, J. Inst. Metals 

75 (1948-49) 693. 
86. W. A. WOOD and W. A. RACHINGER, ibid 76 

(1949-50) 237. 
87. w. A. WOOD and R. F. SCRUTTON, ibid 77 (1950) 

423. 
88. G. B. GREENNOUGH and E. M. SMITH, ibid 77 

(1950) 435. 
89. E. C. CALNAN and B. D. BURNS, ibid 77 (1950) 

445. 
90. W. A. WOOD, G. R. WlLMS and W. A. RACHIN- 

GER, ibid 79 (1951) 159. 
9 1 . W . A .  RACHINGER, ibid 80 (1951-52) 415. 

92. I. S. SERVI and N. J. GRANT, Trans. Met. Soe. 
AIME 191 (1951) 917. 

93. I. S. SERVI, J. T. NORTON and N. J. GRANT, 
Trans. AIME (Z Metals) 194 (1952) 965. 

94. J. W. KELLY and R. C. GIFKINS, Jr. Inst. Metals 
82 (1953-54) 475. 

95. A. M. GERVAIS, J. T. NORTON and N. J. GRANT, 
Trans. Met. Soc. AIME 197 (1953) 1166. 

96. G. D. GEMMELL and N. J. GRANT, Trans. AIME 
(J. Metals) 209 (1957) 417. 

97. H. C. CHANG and N. J. GRANT, Trans, AIME 
(J. Metals) 194 (1952) 619. 

98. N. J. GRANT and A: CHANDHURI, in: "Creep and 
Recovery" (ASM, Cleveland, Ohio, 1957) p. 284. 

99. S. F. EXELL and D. H. WARRINGTON, Phil. Mag. 
26 (1972) 1121. 

100. J. WASHBURN and E. R. PARKER, J. Metals 4 
(1952) 1076. 

101. C. H. LI, E. H. EDWARDS, J. WASHBURN and 
E. R. PARKER, Aeta Met. 1 (1953) 223. 

102. D. W. BAINBRIDGE, "C. H. LI and E. H. 
EDWARDS, ibid 2 (1954) 322. 

103. A. HIGASHI and N. SAKAI, J. Phys. Soe. Japan 16 
(1961) 2359. 

104. S. KARASHIMA, T. HASEGAWA and M. YOKOTA, 
J. Jap. Inst. Metals 32 (1968) 218. 

105. H. GLEITER, Phil. Mag. 20 (1969) 821. 
106. C. R. BARRETT, W. D. NIX and O. D. SHERBY, 

Trans. Amer. Soc. Metals 59 (1966) 3. 
107. F. GAROFALO, L. ZWELL, A. S. KEH and S. 

WEISSMANN, Acta Met. 9 (1961) 721. 
108. S. KARASHIMA, T. IIKUBO and H. OIKAWA, 

Trans. Jap. Inst. Metals 13 (1972) 176. 
109. A. I. MAKHATILOVA, L. V. MINIMA, YE. F. 

SIDOKHIN and L. M. UTEVSKIY, Phys. Met. 
Metallogr. 36 (6) (1973) 150. 

110. V. P. GUPTA and P. R. STRUTT, Canad. s Phys. 
45 (1967) 1213. 

l l l .  T. HASEGAWA, R. HASEGAWA and S. KARA- 
SHIMA, Trans. Jap. Inst. Metals 11 (1970) 101. 

112. T. HASEGAWA, S. KARASHIMA, and R. HASE- 
GAWA, Met. Trans. 2 (1971) 1449. 

113. B. L. JONES and C. M. SELLARS, Metal ScL J. 4 
(1970) 96. 

114. A. H. CLAUER, B. A. WILCOX and J. P. HIRTH, 
ActaMet. 18 (1970) 381. 

115. J. P. POIRIER, Phil. Mag. 26 (1972) 713. 
116. W. HUTHER and B. REPPICH, ibid 28 (1973) 363. 
117. G. STREB and B. REPPICH, Phys. Star. Sol. (a) 

16 (1973) 493. 
118. D. R. CROPPER and J. A. PASK, Phil. Mag. 27 

(1973) 1105. 
119. L. J. CUDDY, Met. Trans. 1 (1970) 395. 
120. A. ORLOVJk, M. PAHUTOVA and J. CADEK, Phil. 

Mag. 25 (1972) 865. 
121. T. HASEGAWA, H. SATO and S. KARASHIMA, 

Trans. Jap. Inst. Metals 11 (1970) 94. 
122. A. ORLOVJk and J. CADEK, Phil. Mag. 21 (1970) 

509. 
123. A. ORLOVJk, R. FIEDLER and J. CADEK, ibid 24 

(1971) 733. 
,124, B. REPPICH and W. HUTHER, ibid 30 (1974) 1009. 

1563 



125. A. H. CLALIER, B. A. WILCOX and J. P. HIRTH, 
Acta Met. 18 (1970) 367. 

126. J. C. M. LI, J. AppL Phys. 33 (1962) 2958. 
127. E. G. BELKIN, N. N. DEMIKHOVSKAYA, I. E. 

KUROV and M. M. MYSHLYAEV, Phys. Star. Sol. 
(a) 16 (1973) 425. 

128. F. H. HAMMAD and W. D. NIX, Trans. Amer. Soc. 
Metals 59 (1966) 95 

129. M. M. MYSHLYAEV, Soy. Phys.-Solid State 9 
(1967) 937. 

130. H. J. McQUEEN, W. A. WONG and J. J. JONAS, 
Canad. J. Phys. 45 (1967) 1225. 

131. H. J. McQUEEN and J. E. HOCKETT, Met. Trans. 
1 (1970) 2997. 

132. A. ORLOVA, Z. TOBOLOV.A and J. CADEK, 
Phil. Mag. 26 (1972) 1263. 

133. M. M. MYSHLYAEV, S. S. OLEVSKII and S. K. 
MAKSIMOV, Phys. Stat. SoL (a) 15 (1973) 391. 

134. K. F. HALE, M. HENDERSON BROWN and Y. 
ISHIDA, Proceedings of the 5th European Con- 
gtess on Electron Microscopy, Manchester (Institute 
of Physics, London, 1972) p.350. 

135. M. HENDERSON BROWN and K. F. HALE, in 
"High Voltage Electron Microscopy" (Proc. 3rd 
Intern. Conf.), edited by P. R. SWANN, C. J.HUM- 
PHREYS and M. J. GORINGE (Academic Press, 
New York, 1974) p. 206. 

136. A. ORLOVtk and J. CADEK, Z. Metallkde. 65 
(1974) 200. 

137. N. MATSUNO, H. OIKAWA and S. KARASHIMA 
J. Jap. Inst. Metals (in Japanese) 38 (1974) 1071. 

138. H. OIKAWA, N. MATSUNO and S. KARASHIMA, 
Metal Sei. 9 (1975) 209. 

139. P. FELTHAM and R. A. SINCLAIR, J. InsL Metals 
91 (1962-63) 235. 

140. C. R. BARRETT, Acta Met. 13 (1965) 1088. 
141. T. HASEGAWA and S. KARASHIMA, Met. Trans. 

1 (1970) 1052. 
142. T. HASEGAWA, H. SATA and S. KARASHIMA, 

Trans. Jap. Inst. Metals 11 (1970) 231. 
143. D. J. LLOYD and J. D. EMBURY, Metal Sei. J. 4 

(1970) 6. 
144. A. ORLOV/~, M. PAHUTOVtk and J. CADEK, Phil. 

Mag. 23 (1971) 303. 
145. T. HOSTINSK4/ and J. CADEK, Phil. Mag. 31 

(1975) 1177. 
146. D. McLEAN and K. F. HALE, in "Structural Pro- 

cesses in Creep" (Iron Steel Inst., Rep. No. 70, 
1961) p. 19. (Cited in [91 .) 

147. Y. ISHIDA and D. McLEAN J. Iron Steel Inst. 
205 (1967) 88. 

148. S. KARASHIMA, T. IIKUBO, T. WATANABE and 
H. OIKAWA, Trans. Jap. Inst. Metals 12 (1971) 369. 

149. A. FUCHS and B. ILSCHNER, ActaMet. 17 (1969) 
701. 

150. N. IGATA, K. MIYAHARA and T. TAOKA, Jern- 
kont. Ann. 155 (1971) 373. 

151. A. ORLOVlk and J. CADEK, Phil Mag. 28 (1973) 
891. 

152. H. OIKAWA, M. MAEDA and S. KARASHIMA, 
Z Jap. Inst. Metals (in Japanese) 37 (1973) 599. 

153. M. MAEDA, H. OIKAWA and S. KARASHIMA, 
ScriptaMet. 8 (1974) 183. 

154. S. K. MITRA and D. McLEAN, Metal Sei. J. 1 
(1967) 192. 

155. V. V. LEVITIN and V. K. ORZHITSKAYA, Phys. 
Met. Metallogr. 30 (4) (1970) 172. 

156. R. LAGNEBORG, Metal ScL J. 3 (1969) 18. 
157. K. R. WILLIAMS and I. R. McLAUCHLIN, J. Mater. 

Sei. 5 (1970) 1063. 
158. L. ROHLIN, Jernkont. Ann. 155 (1971) 381. 
159. B. MODEER and R. LAGNEBORG, ibid 155 (1971) 

363. 
160. A. ODEN, E. LIND and R. LAGNEBORG, ibid 155 

(1971) 386. 
161. D. J. MITCHEL, J. MOTEFF and A. J. LOVELL, 

Acta Met. 21 (1973) 1269. 
162. V: K. SIKKA, H. NAHM and J. MOTEFF, Mater. 

Sci. Engr. 2 0  (1975) 55. 
163. R. R. VANDERVOORT and W. L. BARMORE, 

Trans. Met. Soc. AIME, 245 (1969) 825. 
164. R, C. RAU, S. F. BARTq)RAM and P. N. FLAG- 

ELLA, Trans. Amer. So~ Metals 61 (1968) 647. 
165. R. R. VANDERVOORT, Met. Trans. 1 (1970) 857. 
166. J. B. BILDE-SORENSEN, J. Amer. Ceram. Soc. 55 

(1972) 606. 
167. M.. HENDERSON BROWN, K. F. HALE and R. 

LAGNEBORG, Scripta Met. 7 (1973) 1275. 
168. V. V. LEVITIN, V. I. BABENKO and A. L. ZLAT- 

SIN, Phys. Met. Metallogr. 35 (4) (1973) 139. 
169. S. KARASHIMA, H. OIKAWA and T. HASEGAWA, 

J. Jap. Inst. Metals (in Japanese) 31 (1967) 782. 
170. G. YA. KOZYRSKIY, P. N. OKRAINETS and V. K. 

PISHCHAK, Phys. Met. Metallogr. 34 (3) (1972) 151. 
171. C. R. BARRETT, E. C. MUEHLEISEN and W. D. 

NIX,Mater. Sei. Eng. 10 (1972) 33. 
172. A. GOLDBERG, Jr. Iron Steel Inst. 204 (1966) 268. 
173. S. DAILY and C. N. AHLQUIST, Scripta Met. 6 

(1972) 95. 
174. M. R. STAKER and D. L. HOLT, Acta MeL 20 

(1972) 569. 
175. M. PAHtrTOV/k, A. ORLOV.k, K. KUCHAROVJ~ 

and J. CADEK, Phil. Mag. 28 (1973) 1099. 
176. A. ODEN, E. LIND and R. LAGNEBORG, in 

"Creep Strength in Steel and High-Temperature 
Alloys" (The Metals Society, London, 1974) p. 60. 

177. E. N. da C. ANDRADE and K. H~ JOLLIFFE, 
Proc. Roy. Soc. (London) A213 (1952) 3. 

178. A. J. KENNEDY, Brit. J. AppL Phys. 4 (1953) 
225. 

179. J. D. LUBAHN, Trans. Amer. Soc. Metals 45 (1953) 
787. 

180. O. D. SHERBY, R. FRENKEL, J. NADEAU and 
J. E. DORN, Trans. AIME (J. Metals) 200 (1954) 
275. 

181. O. D. SHERBY, T. A. TROZERA and J. E. DORN, 
Proe. Amer. Soc. Test. Mater. 56 (1956) 789. 

182. w. D. LUDEMANN, L. A. SHEPARD and J. E. 
DORN, Trans. Met. Soc. AIME 218 (1960) 923: 

183. A. E..BAYCE, W. D. LUDEMANN, L. A. SHEPARD 
and J. E. DORN, Trans. Amer. Soc. Metals 52 
(1960) 451. 

1564 



184. L. RAYMOND and J. E. DORN, Trans. Met. Soc 
AIME 230 (1964) 560. 

185. S. K. MITRA and D. McLEAN, Proc. Roy. SoP. 
295 (1966) 288. 

186. T. WATANABE and S. KARASHIMA, Trans. Jap. 
Inst. Metals, Suppl. 9 (1968) 242. 

187. W. J. EVANS and B. WlLSHIRE, Trans. Met. Soc. 
AIME 242 (1968) 2514. 

188. D. SIDEY and B. WlLSHIRE, MetalSci. J. 3 (1969) 
56. 

189. C. R. BARRETT, C. N. AHLQUIST and W. D. NIX, 
MetalSci. J. 4 (1970) 41. 

190. T. WATANABE and S. KARASHIMA, ibid 4 (1970) 
52. 

191. E. G. WILSON, Jr. Sheffield Univ. Met. Soc. 11 
(1972) 21. 

192. P. W. DAVIES, G. NELMES, K. R. WILLIAMS and 
B. WILSHIRE, Metal Sci. J. 7 (1973) 87. 

193. T. B. GIBBONS, J. S. HERD, L. N. McCARTNEY 
and D. McLEAN, MetalSci. J. 7 (1973) 196. 

194. G. J. LLOYD and R. J. McELROY, Aeta Met. 22 
(1974) 339. 

195. J. M. BIRCH and B. W1LSHIRE, Jr. Mater. Sci. 9 
(1974) 794. 

196. Idem, ibid 9 (1974) 871. 
197. ldem, Phil. Mag. 30 (1974) 1023. 
198. C. M. YOUNG, S. L. ROBINSON and O. D. 

SHERBY, Acta Met. 23 (1975) 633. 
199. G. B. GIBBS,PhiL Mag. 13 (1966) 317. 
200. A. A. SOLOMON and W. D. NIX, Acta MeL 18 

(1970) 863. 
201. P. W. DAVIES and B. WlLSHIRE, Scripta Met. 5 

(1971) 475. 
202. M. PAHUTOVA, T. HOSTINSKY and J. CADEK, 

ActaMet. 20 (1972) 693. 
203. Z. TOBOLOV/k and J. CADEK,Phil. Mag. 26 (1972) 

1419. 
204. P. W. DAVIES, G. NELMES, K. R. WILLIAMS and 

B. WILSHIRE,Metal Sci. J. 7 (1973) 87. 
205. S. KIKUCHI, M, KAJITANI, T. ENJO and M. 

ADACHI, J. Jap. Inst. Metals (in Japanese)37  
(1973) 228. 

206. M. PAHUTOV,~ and J. CADEK, Mater. Sci. Eng. 11 
(1973) 151. 

207. H. OIKAWA, J. KARIYA and S. KARASHIMA, 
Metal Sci J. 8 (1974) 106. 

208. K. KUCHAROV/~, I. SAXL and J. CADEK, Acta 
Met. 22 (!974) 465. 

209. H. OIKAWA and S. KARASHIMA, Met. Trans. 5 
(1974) 1179. 

210. S. TAIRA, M. INOHARA and M. FUJINO, Trans. 
Iron Steel Inst. Japan 14 (1974) 331. 

211. R.W. BAILEY, J. Inst. Met. 35 (1926) 27. 
212. E. OROWAN, J. West Scotl. Iron Steel Inst. 54 

(1946-47) 45. 
213. B. BURTON, MetalSci. J. 9 (1975) 297. 
214. D. J. LLOYD and J. D. EMBURY, Met. ScL J. 4 

(1970) 6. 
215. A. ORLOV/~ and J. CADEK, Z. Metallkd. 65 (1974) 

55. 
216. S. L. ROBINSON and O. D. SHERBY, AetaMet. 17 

(1969) 109. 

217. S. L. ROBINSON, C. M. YOUNG and O. D. 
SHERBY, J. Mater. Sci. 9 (1974) 341. 

218. C. M. YOUNG, S. L. ROBINSON and O. D. 
SHERBY, Acta Met. 23 (1975) 633. 

219. J. HENDERSON and J. D. SNEDDEN, J. Mech. 
Engnr. Sci. 10 (1968) 24. 

220. M. KITAGAWA, C. E. JASKE and 1. MORROW, in 
"Fatigue at High Temperature", ASTM, STP 459 
(ASTM, Philadelphia, 1969) p. 100. 

221. H. BRUNNER and N. J. GRANT, Trans. Met. Soc. 
AIME 218 (1960) 122. 

222. A. J. KENNEDY, "Processes of  Creep and Fatigue in 
Metals" (Oliver and Boyd, Edinburgh, 1962). 

223. F. A. McCLINTOCK and A. S. ARGON, "Mechanical 
Behaviour of Materials" (Addison Wesley, Reading, 
Mass., 1966) p. 632. 

224. R. RAJ and M. F. ASHBY, Met. Trans. 2 (1971) 
113. 

225. E. W. HART, Acta Met. 15 (1967) 1545. 
226. F. W. CROSSMAN and M. F. ASHBY, ibid 23 

(1975) 425. 
227. J. H. GITTUS,Phil. Mag. 21 (1970)495. 
228. Idem, ibid 23 (1971) 1281. 
229. G. B. GIBBS, ibid 23 (1971) 771. 
230. U. F. KOCKS,in "Rate Processes in Plastic Defor- 

mation of Materials", edited by J. C. M. Li and A. K. 
Mukherjee (ASM, Metals Park, Ohio, 1975) p. 356. 

231. C. GRANT,J.  Mech. Eng. Sci. 16 (1974) 205. 
232. T. H. ALDEN,Ph/I. Mag. 25 (1972) 785. 
233. J. FRIEDEL, "Dislocations" (Addison Wesley, 

Reading, Mass., 1964) pp. 409,239. 
234. N. F. MOTT, PhiL Mag. 43 (1952) 1151. 
235. P. B. HIRSCH and D. H. WARRINGTON, ibid 6 

(1961) 735. 
236. W. D. NIX, Acta Met. 15 (1967) 1079. 
237. V. V. LEVITIN, Phys. Met. Metallogr. 32 (4) (1971) 

190. 
238. T. WATANABE and S. KARASHIMA, Trans. Jap. 

Inst. Metals 11 (1970) 159. 
239. B. A. VERSHOK and A. L. ROYTBURD,Phys. Met. 

Metallogr. 35 (1973) 32. 
240. M. MALU andJ .  K. TIEN, ActaMet. 22 (1974) 145. 
241. N. LOUAT and .C .A .  JOHNSON, Phil. Mag. 7 

(1962) 2051. 
242. R. LAGNEBORG, Metal. Sci. J. 3 (1969) 161. 
243. R. LAGNEBORG, ibid 6 (1972) 127. 
244. J. H. GITTUS, AetaMet. 22 (1974) 789. 
245. Idem, ibid 22 (1974) 1179. 
246. IL LAGNEBORG, B. H. FORSI~N and J. WIBERG, 

in "Creep Strength in Steel and High-Temperature 
Alloys" (The MetaLs Society, London, 1974) p. 1. 

247. F. R. N. NABARRO,Ph/I. Mag. 16 (1967) 231. 
248. J. M. DUPOUY, ibid 22 (1970) 205. 
249. V. K. LINDROOS and H. M. MIEKK-OJA, ibid 17 

(1968) 119. 
250. W. BLUM,Phys. Stat. Sol. (b) 45 (1971) 561. 
251. S. TAKEUCHI and A. S. ARGON, ActaMet. in press. 
252. W. A. WOOD and J. W. SUITER, J. Inst. Metals 80 

(1951-52) 501. 
253. O. D. SHERBY, A. GOLDBERG and J. E. DORN, 

Trans. Amer. Soc. Metals 46 (1954) 680. 
254. K. O. BOGARDUS, M. S. HUNTER, M. HOLT and 

1565 



G. R. FRANK, Jun., in "Joint  International Con- 
ference on Creep, 1963" (Inst. Mech. Eng. London, 
1965) p. 1 -17 .  

255. U. F. KOCKS, J. Eng. Mats. TechnoL, 98 (1976) 76. 

256. D. L. HOLT, J. AppL Phys. 41 (1970) 3197. 
257. W. D. LUDEMANN, L. A. SHEPARD and J. E. 

DORN, Trans. Met. Soc. AIME 218 (1960) 923. 
Received 22 January and accepted 6 February 1976. 

1566 


